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Abstract
With the growing usage of Bitcoin and other cryptocurrencies,
many scalability challenges have emerged. A promising scal-
ing solution, exemplified by the Lightning Network, uses a net-
work of bidirectional payment channels that allows fast trans-
actions between two parties. However, routing payments on
these networks efficiently is non-trivial, since payments require
finding paths with sufficient funds, and channels can become
unidirectional over time blocking further transactions through
them. Today’s payment channel networks exacerbate these
problems by attempting to deliver all payments atomically.

We present the Spider network, a new packet-switched ar-
chitecture for payment channel networks that addresses these
challenges. Spider splits payments into transaction units and
transmits them over a period of time across different paths.
Spider uses congestion control, in-network scheduling, and
imbalance-aware routing to optimize delivery of payments.
Our results show that Spider improves the number and volume
of successful payments on the network by 10-75% and 10-35%
respectively compared to practical state-of-the-art approaches.

1 Introduction
Today’s cryptocurrencies have poor transaction throughput and
slow confirmation times. Bitcoin supports 3-7 transactions per
second and takes tens of minutes to confirm a transaction [35].
By comparison, established payment systems like Visa pro-
cess thousands of transactions per second with a delay of a
few seconds [35]. Further, high transaction costs make current
blockchains impractical for micropayments [2].

Payment channel networks are a leading proposal for tack-
ling these scalability challenges. A payment channel is a block-
chain transaction that escrows a given user Alice’s money in
order to enable future transactions to a specific recipient Bob,
much like a gift card. Once Alice opens a payment channel to
Bob, she can transfer funds repeatedly and securely without
recording every transaction on the blockchain. By routing pay-
ments through intermediate payment channels, participants in a
payment channel network can transfer funds even if they do not
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share a direct payment channel. First proposed in the Lightning
Network [27], payment channel networks have been touted
as a game-changing technology [17, 23, 32], with multiple
implementations under development (e.g., Bitcoin’s Lightning
Network [27], Ethereum’s Raiden Network [8]).

Payment channel networks transfer cryptocurrency, not data,
but their design presents several technical and economical chal-
lenges familiar to communication networks. First, payment
channel networks require efficient mechanisms to find paths
for payments and to deliver them with high throughput and
low delay. Efficient networking is essential to the economic
viability of payment channel networks; it is particularly impor-
tant to achieve a high transaction throughput without having to
escrow a large amount of capital in payment channels. Second,
the network must provide the right incentives to both end-users,
who desire low transaction fees, and service providers, who
wish to maximize their profits from routing payments. Third,
the network should ensure the privacy of user transactions.

In this paper we present Spider, a new design for payment
channel networks. Spider uses two main ideas that distinguish
it from existing approaches. First, it uses packet switching.
Existing designs attempt to send payments atomically on paths
with enough funds to fully satisfy the payment — an approach
analogous to circuit switching. By contrast, Spider’s senders
break up payments into transaction units and transmit them
over a period of time across different network paths. Spider
uses congestion control and in-network scheduling of transac-
tion units to achieve high utilization of payment channel funds
while supporting a variety of payment delivery services (e.g.,
atomic and non-atomic payments with different deadlines).

Spider’s second key idea is imbalance-aware routing. An
important challenge for routing is that a payment channel be-
comes imbalanced when the transaction rate across it is higher
in one direction than the other; the party making more pay-
ments eventually runs out of funds and cannot send further
payments without depositing new funds into the payment chan-
nel on the blockchain. We analyze routing with rate-imbalance
constraints from first principles and show that the maximum
achievable throughput depends on properties of a payment
graph that captures the flow of currency between network par-
ticipants. Inspired by prior work on optimization-based routing
and rate control [13, 20], we formulate optimization problems
for routing with rate-imbalance constraints, and we derive de-
centralized algorithms for solving these problems as well as
simpler heuristic algorithms.

Our preliminary results show that Spider improves the num-
ber and volume of successful payments through the payment
channel network, compared to prior approaches to routing
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Figure 1: Bidirectional payment channel between Alice
and Bob. A blue shaded block indicates a transaction that is
committed to the blockchain.

payments. For a given amount of funds escrowed in the net-
work, Spider is able to complete 10-30% more transactions
amounting to a 10-15% increase in volume of transactions rel-
ative to SilentWhispers [22]. It also completes 55-75% more
transactions (25-35% increase in transaction volume) than
SpeedyMurmurs [30]. On an ISP-like topology, Spider outper-
forms a classical max-flow based-approach by 5-15% on both
the number and volume of successful transactions.

2 Background
Bidirectional payment channels are the building blocks of a
payment channel network. A bidirectional payment channel
allows a sender (Alice) to send funds to a receiver (Bob) and
vice versa. To open a payment channel, Alice and Bob jointly
create a transaction that escrows money for a fixed amount
of time [27]. Suppose Alice puts 3 units in the channel, and
Bob puts 4 (Fig. 1). Now, if Bob wants to transfer one token
to Alice, he sends her a cryptographically-signed message
asserting that he approves the new balance. This message is
not committed to the blockchain; Alice simply holds on to it.
Later, if Alice wants to send two tokens to Bob, she sends a
signed message to Bob approving the new balance (bottom
left, Fig. 1). This continues until one party decides to close the
channel, at which point they publish the latest message to the
blockchain asserting the channel balance. If one party tries to
cheat by publishing an earlier balance, the cheating party loses
all the money they escrowed [27].

A payment channel network is a collection of bidirectional
payment channels (Fig. 2). If Alice wants to send three tokens
to Bob, she first finds a path to Bob that can support three
tokens of payment. Intermediate nodes on the path (Charlie)
will relay payments to their destination. Hence in Fig. 2, two
transactions occur: Alice to Charlie, and Charlie to Bob. To
incentivize Charlie to participate, he receives a routing fee.
To prevent him from stealing funds, a cryptographic hashlock
ensures that all intermediate transactions are only valid after
a transaction recipient knows a private key generated by Al-
ice [8]. Once Alice is ready to pay, she gives that key to Bob;
he can either broadcast it (if he decides to close the channel)
or pass it to Charlie. Charlie is incentivized to relay the key
upstream to Alice so that he can also get paid.

3 Related Work
An important problem is how to choose routes for transactions.
In the Lightning Network, each node maintains a local view of

Figure 2: In a payment channel network, Alice can transfer
money to Bob by using intermediate nodes’ channels as relays.
There are two paths from Alice to Bob, but only the path (Alice,
Charlie, Bob) can support 3 tokens.

the network topology and source-routes transactions [27]; in
current implementations, nodes pick paths using shortest path
algorithms [5]. An important benchmark is the max-flow rout-
ing algorithm [14], which uses a distributed Ford-Fulkerson
algorithm to find source-destination paths that support the
largest transaction volume for each transaction. If this volume
exceeds the transaction value, the transaction succeeds. Max-
flow routing is the gold standard in terms of throughput and
transaction success rate, but it has high overhead, requiring
O(|V | · |E |2) computation per transaction, where |V | and |E |
are the number of nodes and edges in the network, respec-
tively [36]. Currently, the Lightning Network has∼1000 nodes
and 10,000 channels, making this very expensive [3, 6].

Two main alternatives have been proposed: landmark rout-
ing and embedding-based routing. In landmark routing, select
routers (landmarks) store routing tables for the rest of the net-
work, and nodes need only route transactions to a landmark
[33]. This approach is used in Flare [28] and SilentWhispers
[22, 24]. Spider does not use landmarks, but like SilentWhis-
pers, it splits transactions over multiple paths [22]. Embedding-
based or distance-based routing instead learns a vector embed-
ding for each node, such that nodes that are close in network
hop distance are also close in embedded space. Each node re-
lays each transaction to the neighbor whose embedding is clos-
est to the destination’s embedding. VOUTE [29] and Speedy-
Murmurs [30] use embedding-based routing. Computing and
updating the embedding dynamically as the topology and link
balances change is a primary challenge of these approaches.

A key difference with prior work is that Spider actively ac-
counts for the cost of channel imbalance by preferring routes
that rebalance channels. The problem of channel imbalance is
receiving increasing attention [21], but prior literature treats
rebalancing as a separate, periodic task. Revive [21], for in-
stance, periodically chooses leaders to compute rebalancing
transactions for a group of online participants. Spider instead
explicitly incorporates it into its routing algorithms.

4 Architecture
In current payment channel networks, the sender first finds one
or more paths with enough funds (“capacity”) to fully satisfy
the payment, and only then transmits it by sending one transac-
tion on each path. This approach is similar to circuit switching
and has several drawbacks. First, it makes it difficult to support
large payments. Second, it exacerbates imbalance on payment
channels. A large transaction can deplete funds on one side of
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a payment channel; the party that runs out of funds cannot send
more payments until it either receives payments from the other
side, or it replenishes funds via a blockchain transaction. The
result is head of line blocking, where large transactions can
block shorter payments that could have been serviced quickly.

Spider is a packet-switched payment channel network that
solves these problems. At a high-level, Spider hosts send pay-
ments over the network by transmitting a series of transaction
units over time, much like packets in a data network. Each
transaction unit transfers an amount of money bounded by the
maximum transaction unit (MTU). Transaction units from dif-
ferent payments are queued at Spider routers, which transmit
them as funds become available in payment channels.

4.1 Spider Hosts
Spider hosts run a transport layer that provides standard in-
terfaces for applications to send and receive payments on the
network. We envision a message-oriented transport rather than
a stream-oriented transport like TCP. To send a payment, the
application specifies the destination address, the amount to
send, a deadline, and the maximum acceptable routing fee.

The transport provides interfaces for both atomic and non-
atomic payments. It guarantees that atomic payments are either
fully delivered or that no payment takes place. For non-atomic
payments, the transport is allowed to partially deliver the pay-
ment; it must then inform the sender precisely how much it
delivered by the deadline and ensure that no further transac-
tions are made as part of that payment. The sender can attempt
the remainder of the payment at a later time, or decide to com-
plete the payment on the blockchain. As we will see, relaxing
atomicity improves network efficiency, and we therefore ex-
pect the routing cost for non-atomic payments to be cheaper.

Recall that transactions through payment channel networks
are locked by a cryptographic hashlock, whose private key
is known only to the sender (§2). To implement non-atomic
payments, the sender simply waits for confirmation from the
receiver that she has received a transaction unit (identified by
a payment ID and sequence number), and only then sends her
the key. The sender therefore knows exactly how much of a
payment the receiver can claim. It can withhold the key for
in-flight transactions that arrive after the deadline, or cancel
them by informing routers.

Spider is also compatible with atomic payments using re-
cent mechanisms like Atomic Multi-Path Payments (AMP) [1].
AMP splits a payment over multiple paths and derives the keys
for all payment transaction units from a single “base key”; by
using secret sharing, it ensures that the receiver cannot unlock
any money before receiving all transaction units.

Spider hosts use a congestion control algorithm to deter-
mine the rate to send transaction units for different payments.
Designing congestion control algorithms for payment chan-
nel networks is beyond the scope of this paper, but we briefly
remark on some interesting aspects. Standard goals for conges-
tion control in data networks such as high utilization, fairness,

rA→B

Available fundsRouter A Router B

rB→A

Pending funds

Figure 3: Routers queue transaction units and schedule them
across the payment channel based on available capacity and
transaction priorities. Funds received on a payment channel
remain in a pending state until the final receiver provides the
key for the hashlock.

and low delay also apply to payment channel networks. Addi-
tionally, transfers in payment channel networks have deadlines,
and therefore approaches that adapt congestion control to meet
deadlines are particularly relevant [18, 34]. Hosts can imple-
ment congestion control through implicit signals like delay or
explicit signals from the routers (e.g., queue sizes, available
capacity, imbalance, etc.).

A unique aspect of payment channel networks is that send-
ing at higher rates does not always reduce capacity for other
payments; it may improve performance for other payments by
rebalancing payment channels. For example, a sender that sees
imbalanced payment channels in the downstream direction
can aggressively increase its rate to rebalance those channels.
Exploring imbalance-aware congestion control algorithms is
an interesting direction for future work.

4.2 Spider Routers
Spider routers are responsible for forwarding transaction units
to the intended receiver. Existing designs like the Lightning
Network use Onion routing [15] to ensure privacy of user pay-
ments. Spider routers can use similar mechanisms for each
transaction unit to provide privacy [7].

A Spider router queues transaction units when it lacks the
funds to send them immediately (Fig. 3). As it receives funds
from the other side of the payment channel, it uses them to
send new transaction units from its queue. Funds from newly-
arrived transaction units are not available to use immediately.
The router must wait until it receives the key for the hashlock
from the final destination. This delay limits the capacity of a
payment channel. If a transaction takes on average ∆ seconds
to confirm, then a payment channel with total funds c can sup-
port, on average, transactions of net value no more than c/∆
currency units per second.

Queuing of transaction units at Spider routers could result
in increased delays for some payments. However, the routers
can offer different classes of service by scheduling transac-
tion units based on payment requirements, such as prioritizing
payments based on size, deadline, or routing fees [12].

5 Routing
Motivating example. The key to effective routing in payment
channel networks is to keep payment channels balanced. To
illustrate the importance of balanced routing, consider the
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Figure 4: Example illustrating balanced routing by two differ-
ent schemes. Each dotted edge represents 1 unit of flow along
the direction of the arrow. The colors indicate separate flows.

5-node payment-channel network shown in Fig. 4. Suppose
sender, receiver pairs seek to transact at the rates shown in
Fig. 5a. For example, node 1 wishes to send at rate 1 to nodes
2 and 5, and node 2 wishes to send at rate 2 to node 4. Fig. 4
shows two different routing strategies under these demands.
Notice that in both cases, the net rate in the two directions of
every edge is equal. This balance requirement is necessary for
any routing strategy to ensure that payment channels do not
run out of funds in one direction.

Fig. 4a shows the result for shortest-path balanced routing,
wherein senders route only along the shortest path to their
receiver nodes. For example, node 4 routes a flow of rate 1
along the path 4→ 2→ 1 (shown in green). The maximum
total rate (throughput) that can be sent by this routing scheme
is 5 units; any rate assignment offering a higher throughput
does not satisfy the balance constraints. However, an alternate
routing scheme of Fig. 4b in which senders do not necessarily
send along the shortest paths achieves a higher throughput
of 8 units. Here, node 2 sends a flow of rate 1 along the path
2→3→4, while the shortest path is 2→4. This enables nodes
3 and 4 to also send 1 unit of flow to nodes 2 and 3 respectively.

Our goal is to design a decentralized routing algorithm to
maximize throughput while maintaining channel balance. We
first describe a fluid model of the network (§5.1), wherein
transactions between source, destination pairs are modeled as
continuous flows. The model provides insights on the funda-
mental limits on throughput that can be achieved with balance
constraints (§5.2) and motivates our algorithms (§5.3).

5.1 Fluid Model
Consider the payment channel network modeled as a graph
G(V ,E), with routersV and payment channelsE. For any source,
destination routers i,j ∈V , let di, j ≥ 0 denote the average rate at
which transaction units have to be transferred from i to j. Let
ce denote the total amount of funds in channel e, for e ∈E, and
∆ the average latency experienced by transaction units due to
network delays. Lastly let Pi, j denote the set of paths from i
to j inG, for i,j ∈V . We include only ‘trails’, i.e., paths without
repeated edges, in Pi, j .

In the fluid model, the demands di, j are satisfied by sending
flows from source to destination routers. A flow is defined by
a (path, value) tuple, where path denotes the route taken and
value denotes the rate carried by the flow. Operationally this
can be interpreted as routing transaction units along the flow
path such that the average rate of currency transferred along the
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Figure 5: Payment graph corresponding to the demands in the
example of Fig. 4. It decomposes into a maximum circulation
and DAG components as shown in (b) and (c).

path equals the value of the flow. Thus, in the fluid model, max-
imizing throughput is equivalent to finding flows of maximum
total value and can be formulated as a Linear Program (LP):

maximize
∑
i, j ∈V

∑
p∈Pi, j

xp (1)

s.t.
∑

p∈Pi, j

xp ≤di, j ∀i,j ∈V∑
p∈P:(u,v)∈p

xp+
∑

p∈P:(v,u)∈p

xp ≤
c(u,v)

∆
∀(u,v) ∈E∑

p∈P:(u,v)∈p

xp−
∑

p∈P:(v,u)∈p

xp =0 ∀(u,v) ∈E

xp ≥ 0 ∀p ∈P,
Here, xp denotes the flow along path p and P =∪i, j ∈VPi, j is
the set of all paths. The second set of constraints reflect the
capacity limits of payment channels (§4.2) and the third set of
constraints enforce the balance requirement. We emphasize
that the balance constraints are fundamentally necessary (much
like capacity and demand constraints) for the flows computed
to be actually realizable.

5.2 Limits on Throughput
Next, we show that the maximum throughput achievable is fun-
damentally restricted by the structure of demand [d]i, j across
users, because of the link balancing requirements.
Payment graphs and circulation. Define a payment graph
H (V ,EH ) as a weighted directed graph with nodesV and edges
EH . An edge (i,j) ∈EH ifdi, j >0withdi, j also being the weight
of that edge. Payment graphs are useful for analyzing through-
put as any flow imbalance across cuts ofH cannot be balanced
by any routing scheme in G. Fig. 5a shows an example of a
payment graph corresponding to the example discussed at the
beginning of §5.

We define the circulation graph of a payment graph H as
another directed weighted graph C(V , EC ) with EC ⊆ EH ,
wC (i, j) ≤ wH (i, j) for all (i, j) ∈ EC , with the total weight
of incoming and outgoing edges equal at any node. wC (i,j),
wH (i,j) denote edge weight of edge (i,j) in graphsC,H respec-
tively. The circulation graph captures flows that form cycles in
the payment graph. Letting

∑
(i, j)∈ECwC (i,j) be the total value

ν (C) of the circulation, there exists a circulation graphC∗ (not
necessarily unique) of maximum value for a given payment
graphH . A maximum circulation graphC∗ can be constructed
by successively removing cycles of constant flow fromH , and
adding them to C∗. The graph remaining after removing all
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cycles from H is a weighted directed acyclic graph (DAG).
Fig. 5b and 5c show the decomposition of the payment graph
of Fig. 5a into circulation and DAG components.

PROPOSITION 1. For a payment graph H with a maxi-
mum circulation graphC∗, there exists a routing scheme that
achieves a throughput of ν (C∗) on a network with payment
channels of unlimited capacity. Conversely, no routing scheme
can achieve a throughput greater than ν (C∗) on any network.

We refer to an extended version of this paper [10] for the
proof. Thus, even if the network is not capacity-limited, the
maximum achievable throughput can be less than 100% if the
payment graph is not a circulation. The routing presented in
Fig. 4b corresponds precisely to routing the maximum circu-
lation component of the payment graph (Fig. 5b) and is hence
optimal. Yet it is only able to route 8/12=75% of the demands
in the payment graph. To route demands beyond the circulation,
some routers have to incrementally deposit funds and replen-
ish their channel balances on the blockchain. The question of
which routers should perform these deposits (and at what rate)
can be answered by generalizing the LP in Eq. (1). We refer
the reader to the extended version [10] for details.

5.3 Algorithms
Directly solving the LP in Eq. (1) would require a centralized
entity to estimate the average payment demands and make
routing decisions for the network as a whole. Fortunately, the
structure of the LP and its dual naturally motivate a decentral-
ized “Primal-Dual” [26] algorithm. Unlike the LP, the decen-
tralized algorithm does not require explicit payment demands;
it routes instantaneous payments demands based on real-time
congestion and channel imbalance information.

Each payment channel has a price in each direction. Routers
locally update these prices based on both congestion and im-
balance in their payment channels. End-host senders compute
prices of different paths whenever there is a transaction to be
completed, and send along the best route. The use of dual vari-
ables for prices is common in the utility-maximization-based
rate control and routing literature (e.g., see [20]). A key dif-
ference from prior work is that in addition to price variables
for link capacity constraints, we also have price variables for
link balance constraints. This ensures that links with skewed
balances have a high price and effectively rebalances the net-
work. Due to space constraints, we include more details in an
extended version of this paper [10].

The Primal-Dual algorithm will find the optimum routes for
the network but may take many iterations to converge [16, 25].
Therefore we also propose a simple multi-path load balancing
algorithm inspired by similar algorithms in networking [19,
37]. In this approach, sources independently try to minimize
imbalance on their paths by always sending on paths with the
largest available capacity, much like “waterfilling” algorithms
for max-min fairness. A source measures the available capac-
ity on a set of paths to the destination. It then transmits on
the path with highest capacity until its capacity is the same as
the second-highest-capacity path; then it transmits on both of

these paths until they reach the capacity of the third highest-
capacity-path, and so on.

We expect Waterfilling to converge faster since routes di-
rectly react to channel balances, unlike the Primal-Dual algo-
rithm where routes react to channel prices, which are them-
selves slowly reacting to actual available capacities. However,
the eventual equilibrium routes computed by Waterfilling could
have a total throughput that is sub-optimal, because each source
load balances its own paths greedily [31].

6 Preliminary Evaluation
6.1 Setup
Simulator. We modified an existing simulator for payment
channel networks [11] to model transaction arrivals and com-
pletion events. Incoming transactions are routed according to
the routing algorithm if funds are available on the desired paths.
Successful payments incur a delay of 0.5 seconds before the
funds are available at the receiver. In the meantime, these funds
are held inflight and are unavailable for use by any party along
the path. As soon as a transaction completes, these funds are re-
leased. The simulator supports non-atomic payments through
a global queue of pending payments. The queue is periodically
polled to see if transactions can progress further. They are then
scheduled according to a scheduling algorithm. We leave im-
plementing in-network queues and rate control to future work.
Dataset. We evaluated the algorithms on two different topolo-
gies: an ISP-topology [4] and a subgraph from the original
topology of Ripple [9], an existing currency exchange network
that transacts in XRPs. The ISP topology has 32 nodes and
152 edges. For the ISP topology, we generated 200,000 transac-
tions, with sizes sampled from the Ripple data after removing
the largest 10% of transactions. The average transaction size
for this dataset was 170 XRP with a maximum size of 1780
XRP. The sender for each transaction was sampled from an ex-
ponential distribution of nodes while the receiver was sampled
uniformly at random. All graph edges were given the same
capacity, a number in the range 10000 XRP to 100000 XRP per
link across different experiments.

We also used data from the Ripple network from January
2013 [11]. The original dataset had 90,000 nodes and 330,000
edges. We pruned it to remove the degree-1 nodes (which don’t
make routing decisions) as well as edges with no funds between
them. The largest resulting component had 3774 nodes and
12512 edges. The 75,000 transactions from the original dataset
that are between nodes in this subgraph had an average size of
345 XRP a maximum size of 2892 XRP. Consequently, we set
the capacity of links in the reduced Ripple graph to 30000.
Schemes. We evaluated SpeedyMurmurs [30], SilentWhis-
pers [22], and max-flow routing. All of these schemes use
atomic payments. We also implemented shortest-path rout-
ing with non-atomic payments as another baseline for our
packet-switched network. We compared these schemes to Spi-
der (LP) and Spider (Waterfilling). Spider (LP) is a centralized
scheme; it solves the LP in Eq. (1) once using the total traffic
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Figure 6: Comparison of payments completed across schemes
on the ISP and Ripple Topologies when the capacity per link is
30,000

demand as input, and it uses the resulting flows for the en-
tirety of the experiment. We use Spider (LP) as a proxy for
the decentralized primal-dual algorithm, whose evaluation we
leave to future work. Spider (Waterfilling) is the decentralized
algorithm described in §5.3. We restrict both algorithms to
use 4 disjoint shortest paths for every source-destination pair.
All non-atomic payments are scheduled in order of increas-
ing incomplete payment amount, i.e. according to the shortest
remaining processing time (SRPT) policy [12].
Metrics. We evaluate these routing schemes for their success
ratio and success volume. The former captures how many
payments amongst those tried actually completed. The latter
focuses on the volume of payments that went through as a
fraction of the total volume across all attempted payments.

6.2 Results
We summarize our results in Fig. 6. The results were collected
after 200s for the ISP topology and 85s for the Ripple topol-
ogy. All the channels in both topologies were initialized with
a capacity of 30000 XRP, equally split between the two parties.
We can see that splitting the payments into transaction units
and scheduling them according to SRPT already provides a
10% increase in success ratio over SilentWhispers and Speedy-
Murmurs even for the shortest path routing scheme. Although
Max-flow performs quite well, it has a high overhead per trans-
action as discussed in §3. In comparison, Spider (Waterfilling)
is able to leverage knowledge of imbalance to perform within
5% of Max-flow despite being restricted to only 4 paths.

Spider (LP), on the other hand, attains a success volume of
52% and 22% for the ISP and Ripple topologies respectively.
Both of these correspond precisely to the circulation compo-
nent of the payment graph. This is because Spider (LP) uses

Spider (Waterfilling) Max−flow Shortest Path Spider (LP) SilentWhispers SpeedyMurmurs

0

20

40

60

80

0 25000 50000 75000 100000
Capacity (XRP)

S
uc

ce
ss

 R
at

io
 (%

)

0

20

40

0 25000 50000 75000 100000
Capacity (XRP)

S
uc

ce
ss

 V
ol

um
e 

(%
)

Figure 7: Effect of increasing capacity per link on the success
metrics when routing payments on the ISP topology. All links in
the network have the same credit.

an estimate of the demand matrix to make decisions for the en-
tire duration of the simulation. While this approach works for
stationary transaction arrival patterns (like the ISP topology),
it does not work well for the Ripple network, where traffic de-
mands vary over time. Further, the LP assigns zero flows to all
paths for certain commodities, so no payments between them
will ever get attempted. We plan to explore objectives like pro-
portional fairness [20] in the future to overcome this problem.
How does capacity impact success? We varied the capacity
on each link in the ISP topology from 10000 XRP to 100000
XRP and measured the success across the schemes. Fig. 7
summarizes the results. As expected, as the capacity increases,
more transactions start succeeding. The total volume of suc-
cessful transactions also experiences an increase. Additionally,
to achieve a certain success volume or success ratio, the amount
of capital that needs to be locked in with Spider (Waterfilling)
is much lower than what would need to be invested in any other
scheme. Spider (LP) is less sensitive to changes in capacity,
because it does a better job of avoiding imbalance.

7 Discussion and Future Work
Payment channel networks promise to be an important ingre-
dient for scaling future blockchain systems, and their design
presents many exciting and unique networking challenges.

As a first step, this paper proposes a new packet-switched
architecture for payment channel networks that harnesses in-
network scheduling and imbalance-aware routing. We envision
further potential gains from router and end-host collaboration,
such as rejecting large transactions that are unlikely to com-
plete within the deadline to increase throughput.

Orthogonal to this, our routing algorithms set routing fees
to maximize throughput for rational users that prefer cheaper
routes. However, our design does not address incentives for
network service providers that wish to maximize profits from
routing fees or adversaries that tamper with the reported fees.
Analyzing Spider’s robustness against such adversaries is an
important direction for future work.

Lastly, we have focused on optimizing payment delivery for
a given network and payment channel capacities. Our results
show fundamental limits to performance that depend on net-
work topology and payment patterns. Designing topologies
that admit efficient routing in a decentralized fashion is an
interesting area for investigation.
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